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2.1 Introduction

Optical engineering is defined as the control of light. Light is controlled by interaction with surfaces,
as is the case in refraction or reflection. Optomechanics is defined as that part of optical engineering
concerned with maintaining the shape and position of the surfaces of an optical system.

Deviation from a stress-free condition is defined as deflection. Deflection affects the shape and
position of surfaces in an optical system. Very small deflections, sometimes as small as one part
per million or less, are important in optomechanical engineering. Unlike ordinary mechancial
engineering practice, emphasis in design of optomechanical systems is on deflection, or strain,
rather than strength, or stress.

This chapter discusses engineering design methods to counteract the effects of deflection on the
performance of an optomechanical system. The following topics are covered in this chapter:

1. Service environments
2. Structural design
3. Kinematic design
4. Athermalization
5. Vibration control

2.2 Service Environments

Often the exact service environment of the system is not well understood. To overcome lack of
knowledge about the actual working environment for the system, standard environment specifica-
tions are used. Military standards are used in the U.S. engineering community as reference envi-
ronments. One such military standard for environments is Military Standard 810, Environmental
Test Methods and Engineering Guidelines.1 Not all applications require the use of military envi-
ronmental standards. Systems intended for use in laboratory environments need not accommodate
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the very severe specifications typical of military systems. Laboratory environments are normally
assumed to be similar to those described in the standards on environment control2 such as ASHRAE
Standard 55-81 and on vibration control.3 Table 2.1 provides examples of service environments,
from mild to severe.

2.3 Structural Design

The support structure of an optical system must maintain the position of the optical components
relative to each other within design tolerances. The most common load on optical systems is self-
weight, due to gravity. Structures with a self-weight deflection that is less than the alignment
tolerance are considered stiff. If the self-weight deflection exceeds the alignment tolerances, the
optical support structure is compliant.

Conventional definitions of structural efficiency in mechanical engineering are based on
strength-to-weight ratios. In contrast, structural efficiency in optomechanical support structures
is determined by stiffness-to-weight. Stress in an optomechanical support structure is at a low level
in comparison with structures used in other mechanical engineering applications.

One index of structural efficiency for optomechanical support structures is fundamental fre-
quency. Fundamental frequency of a support structure is determined by both stiffness and weight.
The fundamental frequency of a structure is a measure of the stiffness-to-weight ratio of a structure.
Self-weight deflection is related to fundamental frequency by:4

where fn = the fundamental frequency, in Hz
g = the acceleration due to the Earth’s gravity
d = the self-weight deflection of the support structure

Fundamental frequency of a self-weight loaded beam is given by:5

where fn = the fundamental frequency, in Hz
li = a dimensionless constant depending on the type of beam support
L = the beam length
E = the elastic modulus of the beam material
I = the cross-section area moment of inertia of the beam

TABLE 2.1 Service Environments

Environment Normal Severe Extreme Example of Extreme

Low temperature 293 K 222 K 2.4 K Cryogenic satellite telescope
High temperature 300 K 344 K 423 K White cell for combustion 

studies
Low pressure 88 KPa 57 KPa 0 Satellite telescope
High pressure 108 KPa 1 MPa 138 MPa Submersible window
Humidity 25–75% RH 100% RH (Underwater) Submersible window
Acceleration 2 g 12 g 11 ´ 103 g Gun-launched projectile
Vibration 200 ´ 10–6 m/sec

RMS, f ³ 8 Hz
0.04 g2/Hz

20 £ f £ 100 Hz
0.13 g2/Hz

30 £ f £ 1500 Hz
Satellite launch vehicle
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m = the mass per unit length of the beam

The above equation is more useful if it is expanded to show the relationships between material
properties and the geometrical efficiency of the beam shape. In the above equation, the mass per
unit length is equivalent to the beam cross section multiplied by the mass density of the beam
material. Using this relationship, the above equation for fundamental frequency becomes

where E/r = the specific stiffness, the ratio of material elastic modulus to material elastic modulus
I/A = the ratio of area moment of inertia of the beam to cross-section area

The highest fundamental frequency is produced by selecting a material with greatest values of
E/r and I/A. The ratio E/r is a measure of the structural efficiency of the material, while the ratio
I/A is a measure of the geometric efficiency of the beam cross section. Efficiency is independent
of the strength of the material. There is no reason in optomechanical design to use high-strength
materials to provide structural efficiency.

The specific stiffness, or ratio of elastic modulus to density, is of considerable importance in the
design of optomechanical support structures. For most common materials, the ratio E/r is con-
stant,6 with a value of about 386 ´ 10–9 m–1. There are materials such as beryllium and silicon
carbide with ratios of E/r below this constant. Such materials are considered lightweight materials.

Selection of materials for optomechanical support structures involves a variety of properties
other than specific stiffness. Damping capacity, which is a property associated with the dissipation
of energy in the material when excited by vibration, is important for dynamic environments.
Materials with high damping capacities are often selected for use in optomechanical systems
subjected to vibration. Damping capacities of materials are given in Lazan7 and other refer-
ences.8-10 Other material properties of interest are discussed in standard engineering materials
selection handbooks. Ashby11 presents material properties in the form of selection charts.
These charts are useful in selecting materials with optimum properties for optomechanical
applications.

In cases where the weight of the support structure is limited, efficiency of the support is improved
through the use of optimization. An example of the usefulness of optimization is the placement
of two simple supports for a beam. Careful selection of the supports substantially reduces beam
deflection.

If the beam is of uniform cross section and is carrying a uniform load, the optimum location
of the support points to minimize the slope from end to end is at a distance of 0.2222 times the
overall length from each end. The maximum slope for a beam supported by two points at this
optimum distance is given by:

where qb = the maximum slope change of the beam
w = the weight per unit length of the beam (self-weight and load)
L = the beam length
E = the elastic modulus of the beam material
I = the area moment of inertia of the beam

If the beam is of uniform cross section and is carrying a uniform load, the optimum location
of the support points to minimize the deflection from end to end is at a distance of 0.2232 times
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the overall length from each end. The maximum deflection for a beam supported by two points
at this optimum distance is given by:

where db is the maximum deflection from end to end of the beam.

If the beam is of uniform cross section and is carrying a moving load, the location of the two
simple supports to minimize the slope is at 0.1189 times the overall beam length from the end.
The change in slope for a beam supported by two points at this optimum distance is given by:

where qm = the change in slope under the weight of the moving load
W = the weight of the moving load

If the beam is of uniform cross section and is carrying a moving load, the optimum location
for the two simple supports to minimize deflection from end to end is at 0.1556 times the overall
length of the beam from the end. The maximum change in deflection under the weight of the
moving load for a beam on simple supports at these optimum locations is given by:

where dm is the change in deflection under the weight of the moving load.

Many optical support structures consist of a beam of uniform cross section with an optical
component at each end. A laser cavity is an example of such a structure. Alignment of the optical
components at each end is maintained with accuracy through the use of a special category of
optimum locations for the beam supports. By placing the two simple supports for the beam at the
Airy points, the end slope of both ends of a uniformly loaded beam becomes zero. With both
supports at the same distance from the beam ends, and the end slopes equal to zero, the beam
ends are in alignment. This alignment is preserved regardless of the orientation of gravity with
respect to the beam. The location of the Airy points is at 0.2113 times the overall length of the
beam from the ends. This location for the simple supports assumes that the weight of the optical
components at each end of the beam is small in comparison with weight of the beam.

If the weight of the optical components at each end of the beam is not small in comparison
with the weight of the beam, the location of the two Airy points is found using the following
equation:

where Ls = the location of the beam supports from one end of the beam
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Lb = the beam length
Wb = the weight of the beam
Wo = the weight of the optics at one end of the beam

In some applications multiple supports are required for a beam. This is a difficult optimization
problem; however, in many cases deflection is reduced to a low level through the use of a distributed
set of simple supports at the Airy points. The optimum spacing required between two adjacent
support points for a uniformly loaded beam to maintain the Airy condition with n simple supports
is given by:

where Ls = the spacing between adjacent support points
Lb = the beam length
n = the number of support points

Efficiency of structural connections is often overlooked in the design of optical support struc-
tures. A bolted connection designed using normal strength of materials practice typically transmits
only about 25% of the moment applied to the connection. Increasing the number of bolts in the
connection by a factor of 2 or 3 increases the amount of moment transmitted to about 50%. For
maximum stiffness it is desirable to limit the number of connections in a structure. The stiffness
of bolted and riveted joints, as well as pin connections, is determined using methods given in
Levina12 and Rivin.13

The following types of structural connections are listed in order of decreasing stiffness:

1. Cast or machined from solid (“hog out” construction)
2. Welding
3. Bolting, using maximum number of bolts possible due to geometry (“overbolting”)
4. Riveting
5. Conventional bolting
6. Adhesives

In design of an optical support structure, it is not necessary to reduce deflection at all parts of
the structure. As shown by the Airy point-supported beam discussed above, deflection of the
support structure is acceptable if optical alignment is not affected. The principle of equal and
parallel end deflections used in the Airy point-supported beam is extended to a truss through the
use of a Serrurier truss.14 The Serrurier truss consists of a truss supported at its center of gravity,
with optical components at each end of the truss. The truss ends remain equal and parallel to each
other regardless of the direction of the gravity vector. For equal and parallel deflections of the end
rings of the Serrurier truss, the following condition must be satisfied:

where w1, w2 = the end ring loads
E1, E2 = the elastic modulii of the truss member
A1, A2 = the cross-section areas of the truss members
L1, L2 = the distances from the center of gravity to the end ring loads

b = the end ring diameter
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Figure 2.1 shows a side view of the Serrurier truss geometry. The maximum deflection of either
end ring is given by:

In some cases it is necessary to locate optical components in portions of the structure which
experience greater deflection than the allowable alignment tolerance. One possible solution to this
problem is an insensitive optical design. Fold mirrors are replaced with penta-prisms which are
insensitive to rotation in one plane. Similar in function to penta-prisms are penta-mirror combi-
nations.

For an afocal system, single lens components are replaced by a pair of components, one positive
and one negative.15 The positive and negative components are placed so that the nodal point of
the combination lies on the intersection of two lines. One line is a perpendicular to the focal plane
of the system. The other line is drawn through the centers of the two components when the
structure is undergoing deflection. Locating the nodal point at this intersection produces a rotation
of the two-lens combination about its nodal point. Rotation about the nodal point does not cause
motion in the final image plane.

For such an insensitive combination, the following equation must be satisfied:

FIGURE 2.1 Serrurier truss geometry.
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where f = the focal length of the afocal component
p = the location of the rear nodal point, measured from the rear vertex of the second

lens element
s = the separation of the two optical elements

The focal lengths f1 and f2 of the two optical elements replacing the single lens are given by:

Weight relief reduces the self-weight deflection to a very low level. Weight relief is obtained
through the use of “off-loading” mechanisms. These mechanisms are soft in all but the direction
of the gravity vector. Examples of this type of mechanism include springs, counterweighted levers,
air bags, and mercury floats. Weight relief was common prior to the development of high capacity
precision bearings. Although not common today for support structures, weight relief is still used
for large optical mounts. Air bag support is provided for the primary mirrors of the multiple
mirror telescope (MMT) at Mt. Hopkins Observatory.

A simple example of weight relief is the counterweight system used on older refractor tele-
scopes.16 A lever arm is parallel to the telescope tube and pivoted at the center of gravity of the
tube. One end of the pivoted arm is attached to the objective end of the telescope tube, while the
other floats free with a counterweight equivalent to the weight of the objective. The lever arm
relieves the telescope tube of the weight of the objective, which reduces the deflection of the
objective relative to the focal plane. The counterweight location at the other end of the telescope
tube moves the center of gravity toward the focal plane, reducing the swing of the eyepiece.

More complex off-loading schemes were developed to reduce the load on precision bearings.
Both whiffle tree mechanisms and mercury floats are used for this purpose. The 2.5-m Hooker
telescope at Mt. Wilson observatory is provided with a mercury float to reduce the load on the
polar axis bearings.17

2.4 Kinematic Design

It is desirable to hold optical components in a way that is repeatable and low in stress. The tolerances
associated with optical systems require extremely accurate mechanical mounting surfaces to achieve
these goals. Such extremely accurate mounting surfaces are very expensive to produce. Kinematic
methods provide accurate and repeatable mounting of optical components, in a low stress condi-
tion, at much lower costs than conventional precision mechanical methods.18

Kinematic methods are derived from the principle of constraint of a rigid body. Every rigid
body possesses six degrees of freedom in translation and rotation about each of three mutually
perpendicular axes. Perfectly rigid bodies can touch only at infinitely small points. A perfectly rigid
body has six N degrees of freedom, where N is the number of contact points.19 Any rigid body
with more than six contact points is overconstrained. An overconstrained rigid body is likely to
have an uncertain position and be distorted from its stress-free condition.

The application of kinematic theory consists of selecting no more than six contact points to
provide the type of support or motion required. Kinematic supports with less than six contact
points permit motion of the supported body. The motion is a “degree of freedom” and is correlated
with the number and geometry of the support points.
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Real kinematic mounts violate the assumption of an infinite elastic modulus associated with a
rigid body. Kinematic designs attempt to approximate the ideal point contact through the use of
Hertz contact. In a Hertz contact, the bodies are assumed to be ellipsoidal, with differing radii of
curvature. The area of contact developed is due to the radii of the contacting solids, the force
pushing the solids into contact, and the elastic properties of the materials.20 Approximate methods
are used to calculate the deflection and stress developed in the Hertz contacts associated with
kinematic design.21

The simplest type of kinematic mount is used to fix the location of a body. This requires six
contact points. Often illustrated in texts on instrument design is the “Kelvin clamp”.22 The Kelvin
clamp employs three spherical locating features attached to the body. One spherical feature is
located in a trihedral socket, one in a v-groove, and one is placed on a flat. There is one contact
point for each flat surface in contact with a sphere: three for the trihedral contact, two for the v-
groove, and one for the flat. Six contact points uniquely locate the body without overconstraint.

Although theoretically attractive, the Kelvin clamp is not a physically practical design due to the
difficulty of making trihedral sockets. One method of producing three-point contact between a
sphere and socket replaces the trihedral socket with a compound socket. The compound socket
consists of three spheres forced into a common cylindrical hole or socket.23 The locating spherical
feature rests against the three spheres. Another method is the replacement of the trihedral socket
with a conical socket. A conical socket is readily produced, but is not truly kinematic since line
contact develops between the conical surface and spherical locating feature.

An alternate to the Kelvin clamp is the three-groove kinematic mounting or coupling.24 The
three-groove kinematic coupling retains the spherical locating features attached to the body. In
place of the socket, v-groove and plane of the Kelvin clamp are three v-grooves. Each v-groove
provides two points of contact. In a planar assembly, the long axes of the three v-grooves intersect
at a common point and are about 120° apart. Figure 2.2 shows a typical three v-groove kinematic
coupling. Three-dimensional configurations are also possible.25

Guidance of motion is provided by use of kinematic principles without any play or backlash.
Use of kinematic design provides unique location of the body at all times, with a resulting absence
of lost motion in all but the desired direction. Both translation and rotation are possible in
kinematic designs.

A kinematic linear translation guiding mechanism consists of two parallel cylinders in contact,
forming a “v-groove” and an adjacent flat guide way. There are three hemispherical feet located
below and attached to the moving carriage. Two of the hemispheres ride in the trough formed by
the two cylinders in contact. Each hemisphere makes a contact with each cylinder, so there are
four contacts between the two cylinders and hemispheres. The third hemisphere is in contact with
the flat guide way, providing a fifth contact point. There are 6-N remaining degrees of freedom.
The number of contact points, N, is equal to 5. Linear translation, in the direction of the axis of
the trough formed between the two cylinders, is this degree of freedom.

Rotation and translation are provided in a single kinematic mechanism by placing a cylinder
between two sets of adjacent cones. There are four contact points between the cylindrical surface
and the four conical surfaces. Rotation of the cylinder about its axis is possible, as is linear
translation of the cylinder along its long axis. This type of mount is used to support alignment
telescopes and collimators.

Pure rotation is obtained in the above example by adding a fifth contact point. This contact
point is a hemisphere bearing against the flat end of the cylinder. Alternate kinematic rotation
guides use curved tracks or combinations of cylindrical and conical ended shafts. A variety of
kinematic mechanisms are possible for guiding motion.26

A serious limitation on the use of kinematic design is stress in the elastic contacts. Hertz contact
stress between curving surfaces is usually much higher than the usual stresses in a support structure.
The high stress level associated with the elastic contacts in kinematic design often lead to the use
of hard, high strength materials such as sapphire and tungsten carbide. Rapid wear in the area of
the elastic contact is a potential problem associated with kinematic guides. Potential wear is assessed
© 1999 by CRC Press LLC



                
using the contact stress models developed by Bayer.27 Wear is reduced to “zero” using the IBM zero
wear theory.28 This wear model states that zero wear is defined as wear equivalent to the surface
finish of a polished metal part. Zero wear occurs when:

where tmax = the maximum shear stress in the elastic contact
tys = the yield stress in shear of the material

Semi-kinematic design reduces the elastic contact stress by replacing the point contacts of a true
semi-kinematic design with small contact areas. These areas are sized to reduce the stress to
acceptable levels. Semi-kinematic design also provides for increasing the number of supports
without overconstraint. Increasing the number of supports is sometimes necessary to decrease self-
weight deflection or to improve stiffness.

In semi-kinematic design, supports are located using kinematic theory. Each support point in
the kinematic design is replaced with a small contact area. Errors in the fit between the two surfaces
in contact at each support induces moments in the supported body. Successful semi-kinematic
design requires careful attention to the quality of the support areas to minimize the support-
induced moments.

There are two methods for providing high quality support areas in semi-kinematic design: tight
tolerances on the surfaces, and surfaces with rotational compliance. Semi-kinematic mounts are

FIGURE 2.2 Kinematic coupling.
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used in supporting optics during diamond turning. In this application the tolerances of the
mounting surfaces must be comparable to the tolerances of the optical surface. This condition is
obtained in diamond turning of optics, but is difficult to provide for most other applications. A
more reasonable tolerance is that the flatness and co-planarity of the mounting surfaces must be
less than the elastic deflection of the mounting surface. For most applications, even this tolerance
is well below what is normally obtained with conventional production methods.

An alternative to tight tolerances is to introduce rotational compliance into the mounting
surface. This is common in the design of tooling fixtures. One commercial component that is used
for semi-kinematic mounts is the tooling (spherical) washer set. A tooling washer set consists of
a concave and convex set of mating washers, with an oversized central hole. During assembly the
washers tilt and de-center to reduce induced moments in the part.

A sphere in cone geometry is used for semi-kinematic mounts. A line contact develops between
the sphere and cone. For optimum performance, the profile error on the conical surface must be
comparable to the profile error (roundness) of the sphere. Trylinski29 gives equations for calculating
the stress and residual moment for a sphere in a conical socket:

where Fa = the axial force acting on the socket
Ft = the shear force acting on the socket

sa = the stress due to the axial force
tt = the stress due to the shear force
r = the radius of the sphere

q = the vertex angle of the conical socket
Es = the elastic modulus of the sphere
Ec = the elastic modulus of the conical socket
ns = the Poisson’s ratio of the sphere
nc = the Poisson’s ratio of the conical socket
m = the coefficient of breakaway friction between sphere and conical socket

Ta = the maximum moment due to the axial force
Tt = the maximum moment due to the shear force
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Semi-kinematic design is used to provide for multiple point support of bodies without causing
overconstraint. Multiple support points are tied together in groups; each group acts as a single
kinematic support. The support points in a group are connected by pivots, with each pivot located
at the center of gravity of the support points. Residual moments induced in the mounted body
using a whiffle tree mechanism arise from friction in the pivots. It is desirable to reduce the pivot
friction to a very low level. Since the pivots provide rotation to balance forces, static friction is
important.

The simplest example of a whiffle tree is a support for a beam. Each of the two simple supports
for the beam is provided with a rocker. At each end of the rockers is a contact point with the
bottom of the beam, so there are four points in contact with the beam. This type of mechanism
is self-adjusting for irregularity in the beam.

More complex whiffle trees are created by adding pivots to the ends of the balance beam carrying
subrockers. The whiffle tree is cascaded using the approach to provide 8, 16, or more support
points. Performance of the whiffle tree is determined by the number of supports, pivot friction,
and rocker stiffness. The distance between adjacent support points in a whiffle tree for a uniformly
loaded beam is determined using the Airy point equation given above. Figure 2.3 shows a typical
whiffle tree design for a beam.

A similar approach is used in whiffle trees supporting plates. In this application, the pivots are
attached to subplates and provide rotation about two different axes. The subplates are normally
triangular, with contacts at the tips of the triangles. The simplest type of plate support uses three
pivots below the plate, located using kinematic principles. Each pivot carries a triangular rocker
plate with three contact points. The optimum location for the support points is determined using
complex structural analysis methods. Alternately, the support points are located using the principle
of equal areas. Each support point carries the same plate area and is located at the centroid of the
area. In axisymmetric plates (optical mirrors) the support points in the whiffle tree are equally
spaced on concentric rings.

2.5 Athermalization

There are three types of thermal effects on optomechanical systems:

1. A temperature change induces distortion in the optical element due to the material prop-
erties of the element. Important thermal properties determining the amount of distortion

FIGURE 2.3 Whiffle tree-supported beam.
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are the thermal coefficient of expansion (a), spatial variation in thermal coefficient of
expansion (Da), thermal distortion index (ratio of thermal coefficient of expansion to
thermal conductivity, a/k), and thermal diffusivity (D).

2. A temperature change induces distortion in the optical element due to the way in which
the element is mounted. This distortion is due primarily to the difference in thermal
coefficients of expansion of the mount and optical element materials. This type of thermal
distortion is discussed in the section on optical mounts.

3. A temperature change induces distortion in the optical support structure. Distortion of the
optical support structure causes a loss of optical alignment. The most important effect of
this loss of alignment is a change in system focus. Athermalization means that the optical
system maintains focus when the temperature changes.

A window is a zero power optical component used in transmission. Windows provide an
introduction to optical effects of temperature changes. Consider a circular, plane parallel window
subjected to a linear temperature gradient through its thickness (linear axial gradient). The hot
side of the window expands relative to the cold side. The change in area of the two sides of the
window causes the window to spring out of shape and become curved. Since the surfaces are
curved, the window acts as a meniscus lens with a power (power is defined as the reciprocal of the
focal length) given by30,31

where 1/f = the power of the distorted window
n = the index of refraction of the window material
a = the thermal coefficient of expansion of the window material
k = the thermal conductivity of the window material
h = the axial thickness of the window
q = the heat flux per unit area absorbed by the window

Distortion of a window due to axial temperature gradients is a weak effect. More serious is a
radial gradient. The radial temperature profile of a window is determined by heat transfer at the
window surfaces. Heat transfer occurs due to conduction, convection, and radiation. Complex
temperature profiles develop due to different kinds of heat transfer occurring simultaneously.

A parabolic radial temperature distribution is a good approximation of many types of window
heat transfer.32 The power of a window with a parabolic radial temperature profile is given by:33,34

where 1/f = the power of the distorted window
h = the window axial thickness
D = the window diameter

DT = the radial difference in temperature, from center to edge
n = the index of refraction of the window material
n = the Poisson’s ratio of the window material
a = the thermal coefficient of expansion of the window material

dn/dT = the thermoptic coefficient of the window material (change in index of refraction
with temperature)
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In most applications the effects of radial gradients are much larger than those due to axial
gradients. It is desirable to reduce radial temperature differences in optical elements to limit such
effects due to gradient. The size of the gradient is reduced by insulating the edge of the window.
Titanium is a good material for this application. The thermal conductivity of titanium is much
lower than that of most common metals, limiting heat transfer into the mount. In addition, the
thermal coefficient of expansion of titanium is a good match with that of many optical materials.
An alternate method is heating or cooling the edge of the window to reduce heat transfer. In some
cases the radial profile is represented by a polynomial expression of order greater than three. The
temperature change associated with this type of gradient is most rapid near the edge of the window.
Making the window oversize with respect to the optical clear aperture limits the effect of such
higher-order gradients. As a rule of thumb, the window should be about 25% larger in diameter
than the optical clear aperture.

The index of refraction of a lens changes with temperature. This change in temperature is due
to the thermoptic property (“dn/dT”) of the lens material. A change in index of refraction of the
lens alters the focal length of the lens. The change in lens focal length with temperature is given by:35

where b = the optothermal expansion coefficient
f = the lens focal length

df/dT = the change in lens focal length with temperature
a = the lens material thermal coefficient of expansion
n = the lens material refractive index

nair = the index of refraction of air
dn/dT = the lens material thermoptic coefficient

dnair/dT = the thermoptic coefficient of air

For ordinary optical glass used in visible wavelengths, nair » 1 and dnair/dT » 0, so the above
equation becomes

The above equation indicates that b, the change in lens power with temperature, is a material
property and is independent of lens surface curvature. Below is a table (Table 2.2) of the opto-
thermal expansion coefficients, b, of a variety of materials.

TABLE 2.2 Optothermal Expansion Coefficients

Glass Type b (m/m-k ´ 10–6)

TiF6 20.94
BK1 3.28
LaKN9 0.32
BAK4 –0.23
KzFS1 –2.89
ZnSe –28.24
Silicon –64.10
Germanium –85.19
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In optical systems with multiple lens elements, the optothermal expansion coefficient of the
system, bS, is given by the following equation:

where bs = the system optothermal expansion coefficient
Ki = the individual element power (reciprocal of focal length)
Ks = the system power
bi = the individual element optothermal expansion coefficient

For athermalization, the focus of the system must not change with temperature. This condition
is obtained if the optothermal expansion coefficient, which represents the change in focus with
temperature, is the same as the thermal expansion coefficient of the system. Or

The range of thermal expansion coefficients is limited by the availability of adequate materials for
optical support structures. It is rare for the optothermal expansion coefficient to be nearly the
same as that of a common structural material. It is possible to adjust the optical design of the
system to produce a bs that is the same as a selected thermal coefficient of expansion.

Another structural technique for athermalization is a bi-metallic compensator. A bi-metallic
compensator is made of materials with different thermal coefficients of expansion. By adjustment
of the lengths of the two types of materials, a good match between the effective thermal coefficient
of expansion of the structure along the optical axis and the optothermal expansion coefficient of
the structure is obtained. For athermalization using a bi-metallic compensator:

where a1,a2 = the thermal coefficients of expansion of the two materials in the bi-metallic struc-
ture

L1,L2 = the respective lengths of the two materials in the bi-metallic structure
bs = the system optothermal expansion coefficient

f = the system focal length

Figure 2.4 shows two types of bi-metallic compensators. Below is a table (Table 2.3) of some
bi-metallic compensator combinations for different types of lens materials:

If the optothermal expansion coefficient of the system is small, a metering structure is used to
athermalize the system. A metering structure consists of a structure made of conventional materials
that provides stiffness in location in all directions except along the optical axis, and an inner, low
thermal coefficient of expansion structure that maintains spacing and alignment with temperature.
Typically, the inner structure consists of rods made of a low thermal coefficient of expansion
material such as invar. The rods are attached to the optical components and are connected to the
optical support structure by linear translation bearings. Low thermal coefficient of expansion
materials such as invar often are expensive and low in structural efficiency.36,37 Metering structures
avoid these disadvantages.

Methods used to athermalize reflective systems are similar in some respects to those used for
refractive systems. Like lenses, mirrors are sensitive to temperature gradients. A linear axial tem-
perature gradient in a mirror along the optical axis will cause the optical surface of the mirror to
change its radius of curvature. The change in surface curvature is determined by the same material
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FIGURE 2.4 Bi-metallic compensators. The upper design provides a low effective structural thermal coef-
ficient of expansion and the lower design provides a near-zero to negative effective structural thermal coefficient
of expansion.

TABLE 2.3 Bi-Metallic Compensators

Glass Type
bS 

(m/m-k ´ 10–6) Material 1
a1

(m/m-k ´ 10–6) L1 ´ f Material 2
a2

(m/m-k ´ 10–6) L2 ´ f

TiF6 20.94 Aluminum 23 0.678 Stainless steel 16.6 0.322
BK1 3.28 Invar 0.54 0.829 Stainless steel 16.6 0.171
LaKN9 0.32 Invar 0.54 1.01 Aluminum 23 –0.01
BAK4 –0.23 Invar 0.54 1.034 Aluminum 23 –0.034
KzFS1 –2.89 Invar 0.54 1.153 Aluminum 23 –0.153
ZnSe –28.24 Stainless 

steel
16.6 1.233 Plastic (ABS)

(polyurethane)
209 –0.233

Silicon –64.10 Stainless 
steel

16.6 1.419 Plastic (ABS) 
(polyurethane)

209 –0.419

Germanium –85.19 Stainless 
steel

16.6 1.358 Plastic 
(polyethylene)

301 –0.358
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property, the thermal distortion index, that determines the change for a refractive component. The
change in surface curvature of a mirror subjected to a linear axial temperature gradient is given by:

where Ro = the original surface radius of curvature
R = the radius of curvature of the surface due to the gradient
a = the thermal coefficient of expansion of the mirror
k = the thermal conductivity of the mirror material
q = the heat flux per unit area through the mirror

Analysis of the effects of more complex gradients requires the use of a method developed by
Pearson and Stepp.38 This set of equations provides a means of evaluating the effect of a global
temperature change as well as linear temperature gradients. The linear temperature gradients are
assumed to lie along each axis of a Cartesian coordinate system, with the origin of the coordinate
system at the vertex of the mirror, with the z axis coincident with the optical axis. These equations
are applicable for both concave and convex mirrors. For convex mirrors a sign change is necessary.
The temperature distribution in the mirror is given by:

where co  = the global change in temperature of the mirror
c1  = the linear temperature gradient along the x axis
c2  = the linear temperature gradient along the y axis
c3 = the linear temperature gradient along the z axis (the optical axis)

The surface deformations due to the above gradients are given by:

where r = the radius position on the mirror surface
q = the angular position on the mirror surface
a = the mirror material thermal coefficient of expansion
R = the optical radius of curvature of the mirror surface
h = the mirror axial thickness

The above equations suggest that temperature gradients are the source of potential problems in
mirrors. A mirror exposed to a sudden change in temperature is likely to develop temperature
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gradients from its surface to interior. The time required for the mirror to reach thermal equilibrium
is estimated using a simple one-degree-of-freedom model. This model gives the time required for
the mirror interior to approach the surface temperature after an instantaneous temperature change.
The mirror interior temperature after some time is given by:

where T¢ = the temperature of the mirror after some time t
T = the initial mirror temperature

DT = the temperature change at the mirror surface
t = the time after the sudden temperature change
h = the mirror axial thickness
D = the thermal diffusivity of the mirror material, where:

k = the thermal conductivity of the mirror material
r = the mirror material density
cr  = the mirror material specific heat

If the thermal coefficient of expansion of the mirror material is not uniform, the mirror distorts
when the temperature is changed. This effect occurs even if the temperature changes globally
without any gradients, and is due to the spatial variation of properties in the mirror. As a rule of
thumb, a spatial variation of 3 to 5% of the thermal coefficient of expansion should be expected
in most materials.39 Low thermal coefficient of expansion materials, with an a near zero, are less
affected by this spatial variation. There may be difficulties due to spatial variation of a with high
thermal coefficient of expansion materials (such as aluminum and beryllium) used for mirror
substrates. If the mirror thermal coefficient of expansion varies linearly along the axis of the mirror,
the surface deformation is given by:

If the mirror thermal coefficient of expansion varies linearly across the diameter of the mirror, the
surface deformation is given by:

where in the above equations:

d = the surface deformation
r = the mirror radius
h = the mirror axial thickness

DT = the change in temperature
Da = the spatial variation in thermal coefficient of expansion

  
¢ » -  -

æ
èç

ö
ø÷

T T T
Dt

h
D exp

p 2

2

  

D
k

c
=

r r

  
d a= r

h
T

2

2
D D

  
d a= r

h
T

2

4
D D
© 1999 by CRC Press LLC



Making all components, optical and structural, of a system out of the same material is an
important method of athermalization of reflective optical systems. This method of athermalization
is called “same material athermalization”. Although all-glass optical systems have been built,40 such
systems are expensive and fragile. Same material athermalization is commonly used with metal
optics. Cost and strength of metal optics and structure are not as much an issue as when glass is
used. Cryogenic optical systems often employ same material athermalization.41,42

2.6 Vibration Control

Vibration is a source of performance degradation in optomechanical systems. Very low levels of
vibration induce a blur in the focus. This vibration-induced blur is sometimes mistaken for blur
due to a system misalignment, or an out-of-focus condition. Higher levels of vibration create a
time-variant blur, which is at least easy to diagnose. Very high levels of vibration carry the potential
for structural failure of the system. In general, operation is not expected at such levels, only survival.

There are two important types of vibration that affect optomechanical systems: periodic and
random. Periodic vibration is characterized by a period and amplitude. The amplitude of complex
periodic vibration is characterized, statistically, by quantities such as the root-mean-square of the
amplitude. Random vibration is also characterized by statistical methods. Random vibration con-
tains all frequencies. One statistical quantity that is often used to describe random vibration is the
power spectral density (PSD). The PSD is a measure of the amplitude of vibration contained within
some bandwidth, typically 1 Hz. Since PSD is a measure of the area under a curve, it is given in
units of area per bandwidth. One such measure is “g2/Hz”, where “g” is a dimensionless acceleration
unit (1 g = acceleration of Earth’s surface gravity).

Response of systems to vibration is a complex topic. Considerable insight is derived from the
use of a simple, single-degree-of-freedom (SDOF) model. This model is used to determine response
of systems to both periodic and random vibration. The most important property of a system
exposed to vibration is the natural frequency. The natural frequency of a system is that frequency
at which the system will oscillate if perturbed from equilibrium. For a simple SDOF system, the
fundamental frequency is given by:

where fn = the natural frequency, in Hz
k = the system spring stiffness

m = the system mass

Many optomechanical systems are mounted kinematically. Certain types of athermalized kine-
matic mounts employ flexural elements between the optical component and the structure. These
flexures act as springs and reduce the fundamental frequency of the mounted component. For
athermalization the flexures are compliant in the radial direction and stiff in all other directions.
In this case the stiffness of the mounted optic in the radial direction is given by:

And the stiffness of the mounted optic in the axial direction is given by:
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where kr = the radial stiffness
n = the number of mounting flexures

krf = the radial stiffness of an individual flexure
ktf = the tangential stiffness of an individual flexure
ka = the axial stiffness
kaf = the axial stiffness of an individual flexure

If a system is perturbed from equilibrium, the amplitude of each successive cycle of vibration
is less than that of the preceding cycle. This decrease in amplitude of vibration with time is due
to energy lost during each cycle. The process of energy loss in a vibrating system is called damping.
A system is said to be critically damped if there is no vibration when the system is perturbed from
equilibrium. For a SDOF system, the critical damping coefficient Cc is given by:

where k = the stiffness
m = the mass

Real systems are usually not critically damped. It is common to give the system damping in
terms of the critical damping ratio. The critical damping ratio CR is the ratio of the system damping
to the amount of damping necessary to make the system critically damped, or C/Cc. The critical
damping ratio is a dimensionless number, but is usually given as a percentage. The critical damping
ratio of optomechanical systems is often less than 5%.43

The response of a SDOF system to a sinusoidal excitation is given by:

where X0 = the amplitude of oscillation of the SDOF system
X1 = the amplitude of oscillation of the exciting force

f = the frequency of the exciting force
fn = the natural frequency of the SDOF system
cR = the critical damping ratio of the SDOF system

There are three special cases of the above equation: spring, damper, and mass-controlled cases.
In the mass-controlled case, the fundamental frequency is much less than the frequency of exci-
tation (f » fn). The response is determined by the amount of mass of the system and the frequency
ratio. In the damper-controlled case, the fundamental frequency is near the frequency of excitation
(f @ fn), and the response is determined by the amount of damping in the system. In the spring-
controlled case, the fundamental frequency is much greater than the frequency of excitation (f «
fn), and the response if determined by the spring stiffness of the system.

The ratio of X0/X1 is the transmissibility of the system and is a dimensionless number. A
transmissibility of less than unity means that the amplitude of response of the SDOF system is less
than the exciting force amplitude. Transmissibilities of greater than unity mean that the amplitude
of response of the SDOF system is greater than the exciting force amplitude. A transmissibility of
greater than unity is very undesirable in optomechanical systems. The Q of a system is the
transmissibility at resonance.
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A vibration isolation system operates in the mass-controlled domain, where the frequency of
excitation is always at least Ö2 higher than that of the fundamental frequency of the isolation
system.44 In the mass-controlled case, the transmissibility T (T = X0/X1) is given approximately by:

where T = the transmissibility
X0 = the amplitude of oscillation of the SDOF system
X1 = the amplitude of oscillation of the exciting force

f = the frequency of the exciting force
fn = the natural frequency of the SDOF system

At high frequency ratios, the above equation indicates that transmissibility is small. For example,
a typical vertical fundamental frequency for an isolation system is 2 Hz. If this isolation system is
subjected to a 60-Hz excitation, the transmissibility is about 0.001. At low frequency ratios, the
transmissibility will approach unity, and isolation suffers. Damping increases the transmissibility
of an isolation system at high frequency ratios and is, therefore, undesirable. Some damping is
necessary to prevent damage to the isolation system if exposed to excitation at the natural frequency
of the system. Nonlinear damping response is provided in isolation system through the use of
surge tanks connected to the cylinders of air springs by metering orifices. Near resonance, the surge
tank damped air spring is high in damping, and response is limited. At high frequencies, the surge
tank is not effective in damping and the air spring isolator operates as though it were undamped.45

Isolation systems consist of a stiff platform supported on isolators. Platform stiffness is much
higher than that of the isolators. Due to the high platform stiffness, the fundamental frequency of
the isolation system is determined by combining the stiffness of the independent isolators with
the inertial properties of the isolators. An isolation system has three natural frequencies in trans-
lation, one in each axis, and three natural frequencies in rotation, one about each axis. Natural
frequencies of the isolation system in translation and rotation are given by:46

where fnt = the natural frequency in translation
fnr = the natural frequency in rotation
m = the isolation platform mass
n = the number of isolators

kit = the isolator stiffness in translation in the axis of the natural frequency
Ir = the platform moment of inertia about the axis of the natural frequency, with respect

to the center of gravity
ri = the distance of the ith isolator from the center of gravity

kir = the isolator stiffness in rotation in a direction perpendicular to ri
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Isolation systems must provide protection against excitation from vibration produced within
the isolation system. Normally random vibration is produced within the isolation system. For
example, in a vibration isolation table used in a laboratory, a blow to the surface of the table
produces both an impulse and random vibration. The effect of the random vibration produced
within the system is to produce relative motion of the components. This relative motion is given
approximately by:

where XRM = the maximum relative motion to the excitation within the vibration isolation system
g = the acceleration due to Earth’s gravity field (in metric units, 9.81 m/sec2)

Q = the transmissibility at resonance of the vibration isolation platform
fn = the fundamental frequency of the vibration isolation platform

PSD = the random vibration excitation (power spectral density) within the vibration iso-
lation system, in units of dimensionless “g2” per hertz

In applying the above equation it is important to note that the fundamental frequency and Q are
for the platform, not the entire vibration isolation system. It is also important to use the proper
units: g in the equation has the units of length over time2, while the PSD is given in units of
dimensionless “g2” per hertz. The relative motion should be in units of length. This equation
indicates that the platform used in a vibration isolation system should be very stiff and well damped
(low “Q” value). This is exactly the opposite of the optimum characteristics of the entire system,
which are low frequency and high “Q”.

A system exposed to random vibration vibrates at its fundamental frequency, since random
vibration contains all frequencies. The response amplitude of the system is determined by a
statistical process. The average or “root-mean-square” amplitude of response of a simple SDOF
system exposed to random vibration is given by:47

where grms = the “root-mean-square” acceleration response, in dimensionless “g”
Q = the transmissibility at resonance of the system
fn = the fundamental frequency of the system

PSD = the random vibration excitation (power spectral density) of the system, in units of
dimensionless “g2” per hertz

It is common in vibration engineering to assume that most structural damage is done by the
“3-sigma” peak acceleration. The “3-sigma” acceleration is found by multiplying grms by a factor
of 3. The displacement response of the system is given by:

where d = the displacement response
fn = the fundamental frequency of the system

Table 2.4 gives the power spectral density of some representative environments.
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